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Let ~v ∈ Rn denote a point (an X-ray source position in X-ray CT n = 2 or
CB CT n = 3), and ~ζ ∈ Sn−1 a unit vector (in the direction from the source
to the detector in X-ray CT), the Divergent Beam transform is defined by

Dµ
(
~v, ~ζ
)

=

∫ +∞

0
µ
(
~v + l~ζ

)
dl (1)

Generally (in particular in X-ray CT, see Fig. 1 for the Fan Beam geometry)
the data are acquired from multiple source positions and the source follows
a trajectory along a curve

~v : T ⊂ R −→ Rn

t −→ ~v(t)

We will suppose in the following that the source trajectory C = {v(t), t ∈ T},
is outside of Ω which is the convex hull of the support of µ, i.e., Ω ∩ C = ∅.
D~vµ

(
~ζ
)

def
=Dµ

(
~v, ~ζ
)

are called projections. In practice, the source tra-

jectory is sampled. The number p ∈ N of x-ray projections is bounded.
Thus we deal with a finite number of vertexes, ~vi ∈ Rn, i = 1, . . . , p (and
~vi = ~v(ti), ti ∈ T is the sampling of the source trajectory). In 2D CT, the
well-known Filtered Back Projection formula yields an efficient inversion,

i.e., the stable analytic reconstruction of µ from (1) when Dµ
(
~v, ~ζ
)

is ac-

quired on a circular trajectory surrounding the measured object µ, for all
direction ~ζ ∈ S1 at each ~v(ti) ∈ C, see [5].

A trans-axial projection truncation occurs at a given ~v(ti) if D~vµ
(
~ζ
)

is

not measured for all lines ~v + R~ζ intersecting the support of µ. In recent
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Figure 1: The Fan Beam variables (t, α), where ~ζ(α) = (− sinα, cosα)t. The
cross section of the measured patient is supposed to be contained here in
the ellipse.

years, Region Of Interest (ROI) methods have been proposed to reconstruct
µ on ROI under conditions of the ROI and the set measured lines. Practical
examples of trajectories involving small detectors relative to the size of the
support of µ (and thus for which trans-axial truncation can not be avoided,
see Fig. 2) have been proposed for ROI reconstruction. A very good review
of 2D ROI reconstruction approaches has been presented in [1]. 3D CB
developments also exist.

In dynamic tomography or 3D reconstruction, we can no longer suppose
that the function µ is not changing during the acquisition. This problem
arises for example when measuring X-ray projections from the thorax re-
gion with a relative slow acquisition system like a C-arm. Let t the source
trajectory parameter represent time, then µ is both a function of t and the
spacial variable ~x, µ(t, ~x). When the variations of µ during the acquisition is
occurring just because of movements or time dependent space deformations,

the assumption that µ(t, ~x) behaves like µ
(
~Γt (~x)

)
can be made, where µ

is the attenuation function at a reference time, for example t = 0, (in this
case ~Γ0(~x) = ~x) and ~Γt is a time dependent diffeomorphic1 deformation, i.e.
a smooth bijective mapping on the space Rn:

~Γt : Rn −→ Rn

~x −→ ~Γt(~x)
. (2)

1If ~Γt and ~Γ−1
t are r times continuously differentiable, ~Γt is called a Cr-diffeomorphism.

We will suppose that ~Γt is at least a C1-diffeomorphism
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Figure 2: Small detector yields truncated data.

Thus ~Γt(~x) maps ~x at time t to its position at the reference time. This kind
of modeling was introduced by Crawford et al [2] and further studied by
Roux et al [6].

In divergent geometry, we define

Dµ~Γt
(~v(t), ~ζ) =

∫
R
µ
(
~Γt

(
~v(t) + l~ζ

)) ∣∣∣det J~Γt
(~y + l~ζ)

∣∣∣ dl (3)

If we assume that ~Γt is known then µ has to be reconstructed from Eq. (3).
We proposed in [4] a generalization of the analytic deformation compensa-
tion to the class of deformations preserving the acquisition line geometry
with the restriction of linear deformation along each line. This last restric-
tion was suppressed in [3] for deformations with mass conservation. More-
over, the compensation was extended in 2D to ROI reconstructions.
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