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Hadrons and partons.

The nucleon: a quantum relativistic system of confined particles.
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nonrelativistic bound state of
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m Modern description (QCD):
relativistic bound state of
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Hadrons and partons.

The nucleon: a quantum relativistic system of confined particles.

QCD generates 2 90 % of the visible universe mass

m Composite object with an
electric charge spread over a
spherical region.

m Quark model description:
nonrelativistic bound state of
3 massive quarks.

m Modern description (QCD):
relativistic bound state of
colored light quarks and
massless gluons (partons).

m Arbitrarily many quarks, antiquarks and gluons in nucleons.

m QCD: few principles, wide scope and puzzling properties:

v/ Asymptotic freedom,
X Confinement.
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Double Distributions M a SS?
Overlap .

Radon transfonm Spin?
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Charge?
Experimental

data analysis
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DVCS Kinematics

R \\/hat are the relevant effec-
Conelusion tive degrees of freedom and

effective interaction at large
distance?
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Towards proton tomography.

Generalized Parton Distributions as a probe of proton structure.

Proton Definitions and properties
tomography

Theoretical constraints on Generalized Parton

— Distributions.
Motivation

Definitions Modeling

Physical content . . . . . .

Formatism Generalized Parton Distribution modeling and the inverse
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How can we make this picture? What do we learn from it?

Towards 3D images
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (1/2).

m Correlation of the longitudinal momentum and the
transverse position of a parton in a hadron.

m DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)
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= of momentum R
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m Correlation of the longitudinal momentum and the
transverse position of a parton in a hadron.

m DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

DVCS e Transverse center
- of momentum R
eare: 0% b, Ri =) Xy
' factorization pp XP+
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m 24 GPDs Fi(x, &, t, uF) for each parton type i = g, u, d, ...
for leading and sub-leading twists.
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Anatomy of hadrons.

GPDs, 3D hadron imaging, and beyond (2/2).

Proton m Probabilistic interpretation of Fourier transform of
fomography GPD(x, £ = 0, t) in transverse plane.

Motivation 1 9 b/ 6JISI 8E 5
i) plebuLddn) = 5 |Hou0.80) + =5 g (e 0.61)
Modeling +)\)\NF,<X7 0’ bi):|

m Notations : quark helicity A, nucleon longitudinal
polarization Ay and nucleon transverse spin S .

dats anayes Burkardt, Phys. Rev. D62, 071503 (2000)

Can we obtain this plcture from exclusive measurements?

Towards 3D images s pioi valence transverse
quarks spin

conclusien Weiss, AIP Conf.
longitud. Proc. 1149,
o 150 (2009

@ ® x<00l  x~0.1 x~03 ©
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Spin-0 Generalized Parton Distribution.

Definition and simple properties.
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HI(x, &, t) =
1 dz—

ixPtz— A 7( Z) + (Z)
0e P+lg(-2 z
2) 2r € <7T/+2‘q 2) 7 9\3

with t = A% and ¢ = —A1/(2PF).

References

Miller et al., Fortschr. Phys. 42, 101 (1994)

Ji, Phys. Rev. Lett. 78, 610 (1997)

Radyushkin, Phys. Lett. B380, 417 (1996)

m PDF forward limit

H(x,0,0) = q(x)
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Spin-0 Generalized Parton Distribution.

Definition and simple properties.

Proton ng (X7 g./ t) =

tomography
1 [dzm jpt+,- Al_r z z A
e (s Sfa(-Dra -3
votaton 2 ) 21 © mEt S T) ) | g ),
Definitions zL=0
o with t = A? and £ = —AT/(2PT).

Modeling

Double Distributions
Overlap

Radon

References

Covariant extension

Miller et al., Fortschr. Phys. 42, 101 (1994)

Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

Experimental
data analysis
Experimental access
DvCs

Towards 3D images

Conclusion m PDF forward limit
m Form factor sum rule
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[ ok 0 = Al
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~- Spin-0 Generalized Parton Distribution.
Cea

Definition and simple properties.
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tomography 1 d N A A
z ixPtz— = ( Z) + < Z)
— P+ lg(-2 Nir,p—2=
Motivation 2 ./ 2 € <7‘r . 2 ‘ q9 2 74 2 g 2 z+t=0
Definitions 7L=0
om0 with t=A%and & = —AT/(2PY).
Modeling

Double Distributions

Overlap

References

Radon transform

Covariant extension

Miiller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)
Conclusion m PDF forward limit
m Form factor sum rule

Experimental
data analysis
Experimental access

DVCS Kinema ttics

m HY is an even function of £ from time-reversal invariance.
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Spin-0 Generalized Parton Distribution.

Definition and simple properties.

Proton Hg_ (X’ 57 t) =

tomography

} dieiXPJrz* T P+é a(_g>,}/+q<5) T P—é
Motivation 2 . 27‘[’ ’ 2 2 2 ’ 2 zt=0
Definitions z; =0
prees ith t = A2 and € = —AT/(2PF).
Modeling
Double Distributions
Overap References
Radon transform
Covariant extension

Miiller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

Experimental
data analysis

PDF forward limit

Form factor sum rule

H9 is an even function of £ from time-reversal invariance.
HY9 is real from hermiticity and time-reversal invariance.

Conclusion
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Not so simple properties.
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m Positivity
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m Polynomiality

Lorentz covariance
m Positivity

Positivity of Hilbert space norm
m H9 has support x € [—1,+1].

Relativistic quantum mechanics
m Soft pion theorem (pion target)

HIi(x,6 =1,t=0) = %qﬂ (Hx)
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Spin-0 Generalized Parton Distribution.

Not so simple properties.

m Polynomiality
Lorentz covariance
m Positivity
Positivity of Hilbert space norm
m H9 has support x € [—1,+1].

Relativistic quantum mechanics
m Soft pion theorem (pion target)

Dynamical chiral symmetry breaking

How can we implement a priori these theoretical constraints?

m There is no known GPD parameterization relying only on
first principles.

m In the following, focus on polynomiality and positivity.
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Double Distributions.

Relation to Generalized Parton Distributions.

Proton m Representation of GPD:

Hi(x, £, £) = /Q Apda§(x— B — ) (FI(8, a, 1) +£GI(B, a, 1))

Motivation
Eilm.tlons m Support property: x € [—1,+1].
o m Discrete symmetries: F9 is a-even and GY is a-odd.
Modeling . i
Double Disrbutions m Gauge: any representation (F9, G9) can be recast in one
o st representation with a single DD f7:
dats anolyse HI(x, &, t) = X/ dBda fiyks (8, a, )d(x — B — af)
xperi ess Qpp

Belitsky et al., Phys. Rev. D64, 116002 (2001)
Conelusion HI(x,&,t) = (1 — x) / dBda (8, o, )d(x — B — af)

Qpp

Pobylitsa, Phys. Rev. D67, 034009 (2003)
Miiller, Few Body Syst. 55, 317 (2014)
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Towards 3D images

Conclusion

Double Distributions.

Lorentz covariance by example.

m Choose FI(B,a) = 356(B) ad GI(B,a) = 3ab(P):

H(x,&) = SX/Qdﬂda d(x—p—af)

m Simple analytic expressions for the GPD:

H(x,€)
H(x,€)

6x(1 X)
€2

<x+ &

Ear e <Xl <t

if0< ¢ <x<1,
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Double Distributions.

Cea Lorentz covariance by example.

m Compute first Mellin moments

Proton
m r N 1
romesraehy - fj—f dxx"H(x, ) f dxx"H(x, €) [jg dxx"H(x, §)
Motivation ) )
l?jfiiniltiolrls"l 0 % 12£T£ ].
Modeling 1 1+£+$2*3§3 K 1+~£2
Double Distributions 2(1+¢) 1+¢€ 2

Overla

nsform

Covariant extension 2 3(1—§)(1+2§+3£2+4§3) 664 3(1+52)
Experimental 10(1+€) 5(1+£) 10
data analysis
oves e 3| LHEHE2ES €N 5E7 6¢> L+¢24¢4
Towards 3D images 5(1 +f) 5 ( 1+E) 5
Conclusion

4 | 1HEHEHE+E1 4606 6¢° 14+€2+¢*

7(14+8) 7(14+€) 7

m Expressions get more complicated as n increases... But
they always yield polynomials!
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~—-- Qverlap representation.
Cea

A first-principle connection with Light Front Wave Functions.

Proton

tomography m Decompose an hadronic state |H; P, \) in a Fock basis:
Motivation | H; P, \) Z/dxulkL NN O ko1, xn k) |8 K- ki)
Definitions

;:'lm m Derive an expression for the pion GPD in the DGLAP

odeling )

Double Distributions reglon 5 S X S 1:

Overlap
Radon transform

e (€ ) Z /dxdkL W3,00 (=3 (™) " (R KD (k)
xperimenta

data analysis

Experimental access

S with X, k| (resp. ¥, k' ) generically denoting incoming
Conclusion (resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. B596, 33 (2001)
m Similar expression in the ERBL region —¢ < x < ¢, but
with overlap of N- and (N + 2)-body LFWFs.
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Overlap representation.

Cea Advantages and drawbacks.

Proton

tomography m Physical picture.
m Positivity relations are fulfilled by construction.
Motivation m Implementation of symmetries of N-body problems.
Definitions
Pt contnt What is not obvious anymore
Modeling What is not obvious to see from the wave function
o representation is however the continuity of GPDs at x = +¢

Radon transform

oo~ and the polynomiality condition. In these cases both the
Experimental DGLAP and the ERBL regions must cooperate to lead to the

data analysis

comme s FEQUIred properties, and this implies nontrivial relations
e between the wave functions for the different Fock states
Conclusion relevant in the two regions. An ad hoc Ansatz for the wave

functions would almost certainly lead to GPDs that violate
the above requirements.

Diehl, Phys. Rept. 388, 41 (2003)

H. Moutarde | DROITE workshop | 14 /29
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The Radon transform.

Cea Definition and properties.

Proton a For s > 0 and ¢ € [0, 27]:
tomography
+00
Motivation Rf(s, ¢) = / dpda (B, )d(s—f cos p—asin @)
Definitions —00

Physical content

Formalism

Modeling
Double Distributions
Overlap

and:
RA—s,¢) = RAs, ¢ £ )

ZANK
Relation to GPDs:

s
X = and £ =tan¢
cos ¢ ‘

Radon transform
Covariant extension

Experimental
data analysis

Conclusion

Relation between GPD and DD in Belistky et al. gauge

N

X, 5) - RfBl\flKS(% ¢) )

X
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tomography
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Definitions —00

Physical content

Formalism

Modeling
Double Distributions
Overlap

and:
RA—s,¢) = RAs, ¢ £ )

ZANK
Relation to GPDs:

s
X = and £ =tan¢
cos ¢ ‘

Radon transform
Covariant extension

Experimental
data analysis

Conclusion

Relation between GPD and DD in Pobylitsa gauge

JIFE

T— s (Xa 5) — RfP(S'/ ¢> >
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Implementing Lorentz covariance.
Extend an overlap in the DGLAP region to the whole GPD domain.

Proton DGLAP and ERBL regions
tomography
(x,§) € DGLAP < |s| > |sing|,

Motivation (x,€) € ERBL & |s] <|[sing].
Definitions —
Physical content | Each pOInt
I;Z'lm (8, ) with
odelin

Double Difributions B = /3 7& 0

o st contributes
Covariant extension to both
E i |

Xperimenta DGLAP and

data analysis

ERBL regions.

m Expressed in
support
theorem.

Conclusion

= (x+9/01+9)
Qpp (o] +[6
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Proton
tomography

Motivation

Definitions
Physical content

Formalism

Modeling

Double Distributions

Overlap

Radon transform

Covariant extension

Experimental
data analysis

Experimental access

DVCS Kinema ttics

Conclusion

Implementing Lorentz covariance.
Uniqueness of the extension.

Theorem

Let f be a compactly-supported locally summable function
defined on R? and Rf its Radon transform.

Let (sp,wp) € R x S' and Uy an open neighborhood of wq such
that:

foralls> sy andw € Uy Rf(s,w) =0.
Then f(R) = 0 on the half-plane (X |wy) > sy of R2.

Consider a GPD H being zero on the DGLAP region.
m Take ¢g and sy s.t. cos g # 0 and |sg| > | sin ¢].
m Neighborhood U of ¢g s.t. Vo € Uy |sin ¢| < |sp].
m The underlying DD f has a zero Radon transform for all
¢ € Up and s > sy (DGLAP).

m Then f{8,a) = 0 for all (B, a) € Qpp with § # 0.
m Extension unique up to adding a D-term: §(5)D(«).
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Computation of the extension.

Numerical evaluation of the inverse Radon transform.

Fully discrete case

Assume f piecewise-constant with values 7, for 1 < m < M.

For a collection of lines (L,)1<p<n crossing dpp, the Radon
transform writes:

. M
G =Rifr= / = Z fm X Measure(L,NCp) for1<n<N

m=1

And if the input data are inconsistent?

m Instead of solving g = Rf, find fsuch that ||g — Rf|
minimum.

2iS

m The solution always exists.

m The input data are inconsistent if ||g — Rf]j2 > 0.
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Covariant and positive GPD models.

First systematic procedure to build models satisfying all constraints.

Chouika
Work in progress

GPD
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Exclusive processes of present interest (2/2).

Factorization and universality.

Bjorken regime : large @* and fixed xB ~ 2¢/(1 + €)
m Partonic interpretation relies on factorization theorems.
m All-order proofs for DVCS, TCS and some DVMP.

m GPDs depend on a (arbitrary) factorization scale pur.

m Consistency requires the study of different channels.

m GPDs enter DVCS through Compton Form Factors :
. 1 Q
]:(5~ t, Q2> = / dxC <Xa £, QS(:U’F)v /1F> F(Xv &t /LF)
-1 /
for a given GPD F.
m CFF F is a complex function.
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Need for global fits of world data.

Different facilities will probe different kinematic domains.

Experimental data collected at
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Need for global fits of world data.

Different facilities will probe different kinematic domains.

Valence quarks | Experimental data collected at
s 3 facilities, soon 4:EIC !

p —)J

|~ /Thomas

| .

Jefferson

National
Laboratory

NSAC, Long Range Plan 2015:
"We recommend [...] EIC as the highest
priority for new facility construction”
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Imaging the nucleon. How?
Extracting GPDs is not enough..Need to extrapolate!

1. Experimental data fits 2. GPD extraction

03 Hie:502.04)

Ao [pb.GeV ™) "

Q%) = 6.3GeV? T
o oV
o (~1) = 0.735 GeV?
o 30 80 120 180 240 300 360

deg]

3. Nucleon imaging

| Images from Guidal et al.,

Rept. Prog. Phys. 76 (2013) 066202 | The 2015 Long Range Plan for Nuclear Science

Sidebar 2.2: The First 3D Pictures of the Nucleon

A computed tomography (CT) scan can help physicians
pinpoint minute cancer tumors, diagnose tiny broken
bones, and spot the early signs of osteoporosis.

Now physicists are using the principles behind the
procedure to peer at the inner workings of the proton.
This breakthrough is made possible by a relatively new
concept in nuclear physics called generalized parton
distributions.

An intense beam of high-energy electrons can be used by [fm] by [fm]
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Imaging the nucleon. How?
Extracting GPDs is not enough..Need to extrapolate!

B Extract H(x, ¢, t, i¢f) from experimental data.
Extrapolate to vanishing skewness H(x, 0, t, umf)
Extrapolate H(x, 0, t, ;LrF‘*f) up to infinite t.

Compute 2D Fourier transform in transverse plane:

R (VAN
X,b1) = 1170 1L 1 X, U, — 1
) = [ DBL 1AL (1B 118 1]) Hox 0, ~A3)

Propagate uncertainties.

[@ Control extrapolations with an accuracy matching that of
experimental data with sound GPD models.
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From principles to actual data.
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GPD H at t = —0.23 GeV?2 and @?

GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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From principles to actual data.

Direct experimental access to a restricted kinematic domain.

Need to know H(x, & nsverse plane imaging.

GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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From principles to actual data.

Direct experimental access to a restricted kinematic domain.

hat is the physical region?

XX

N

A

(X0
X

K

X

‘\"\‘t\

X
X
\
X

X
XX
X

0

X

GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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From principles to actual data.

Direct experimental access to a restricted kinematic domain.

The cross-over lin

GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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From principles to actual data.

Cea Direct experimental access to a restricted kinematic domain.

Proton i

oy nsity plot of H at
Motivation =

0.9
Definitions E
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Modeling 0'7;
Double Distributions 0.6 E
Overlap e
Radon transform 05 =
Covariant extension “E
Experimental 0.4 ?
data analysis g
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Conclusion 0'17(

FC — ‘Emm ‘ ‘ ‘
-1 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.
X ¢ ="d
GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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Support theorem.

We don't need to know the GPD everywhere to image the proton!

Extrapolations

Py, x dipole 10 par
Foly. x dipole  par.
Foly. x dipole 8 par.
| Foly. x dipale 7 par e
Poly. + dipale 12 par
{ Poly. + dipale 11 par
! Poly. + dipale 10 par
Foly. + dipaie  par e
Poly. 12 par.
Poly. 11 par
Poly. 10 par
| Poiy 9 par. e
v, Poiy 9 par.
v, ol 8 par.
T, ol 7 par
v, Poiy 6 par ——t
Spiine x dipale 11 par.
Spiine x dipale 10 par.
Spline x dipale 9 par -
Spline x dipale 8 par e -
Spline x dipale 7 par [
Spline sth order 11 par
Spline 5th order 10 par
Spine 5th order 9 par.
Spline 5th order 8 par. [
11 par

10 par.
Spine dch order 9 par.
Spline 4eh order 8 par. E—
Splne 2nd oder 11 par
Splne Irdorder 10par. | ]
Spine fd order 9 par. [
Spline 2 order § par. e W
0% 0a 08 083 089 031 07007607 05 052051056058 09 0.0

e ]

Bernauer et al.(Al Coll.), Phys. Rev. C90, 015206 (2014)
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Support theorem.

We don't need to know the GPD everywhere to image the proton!

Proton Theorem

omesrety Let f be a compactly-supported summable function defined on
Votivation R? and Rf its Radon transform.

Definitions Let (sg,wo) € R x S' and Uy an open neighborhood of wy s.t.:
— foralls> sy andw € Uy Rfs,w) =0.

Modelin

vasecmsns Then fIN) = 0 on the half-plane (X |wy) > sy of R?.

nsform

Covariant extension -

Experimental
data analysis

B Wy =
Experimental access
DVCS Kinematics ( COS ¢07 Sln gbo)
Towards 3D images
Conclusion N — (B? )
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Support theorem.

We don't need to know the GPD everywhere to image the proton!

m Assume deconvolution of CFF achieved.
m Data: H(x, &) for all x € [—1,+1] and & € [Emin, Emax]-

m Range ¢ €
[d)min-/ 4/)11131)(}-

m All values of s.

5 € [gminaé_max]
p

Qpp (laf + 8] X

m The DD f(3, a) can be uniquely determined.

m H(x,£ = 0) uniquely constrained by Lorentz covariance!
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Conclusions and prospects.

Cea Two problems with important practical consequences.

Proton
tomography
Motivation m Good theoretical control on the path between GPD
2::'”'It'°”s models and experimental data.
Formatim
Modeling m Success of physics program requires new GPD models with
o proper implementations of symmetries.

Radon transform

Covariant extension

m Inverse Radon transform is essential to build models

Experimental

data analysis fulfilling a priori all theoretical constraints in a generic
Experimental access

DVCS Kinematics Way .

Towards 3D images

m The solution of the deconvolution problem may follow.
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