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I. TIME-OF-FLIGHT 2D PET DATA

The TOF sinogram data parameterization is

p(φ, s, t) =

∫ ∞
−∞

dl w(t− l) f(sû⊥ + lû) (1)

where s and φ are the usual radial and angular sinogram coordinates. The unit vectors û⊥ =
(cosφ, sinφ) and û = (− sinφ, cosφ) are orthogonal and parallel to the line of response.

The TOF profile w is centered at point t along the line of response. The TOF profile w is
determined by the time resolution of the scanner and is usually well modeled by a gaussian with
standard deviation σ1

w(t) = e−t
2/2σ2

/
√
2πσ ↔ (Fw)(ν) = ŵ(ν) = e−2π

2σ2ν2

. (2)

The most likely annihilation point (MLA) corresponding to (φ, s, t) is defined by ~r =
sû⊥ + tû.

Inverting (1) is in essence a multi-channel deconvolution problem (one ”channel” for each
φ, see also (13) below).

II. CONSISTENCY CONDITION FOR 2D TOF SINOGRAM DATA

• Existence of a DCC expected from variable counting.
• Geometric interpretation on the black board.
• Trivial DCC if σ → 0.
• The DCC (4) is local, unlike DCCs for non TOF 2D PET (such as Helgason-Ludwig).

If the TOF profile w(t) is the gaussian profile (2) and f is smooth and decays at ∞, the
2D TOF data, equation (1), satisfy for all φ, s, t the partial differential equation (PDE)2

t
∂p

∂s
+
∂p

∂φ
− s∂p

∂t
+ σ2

∂2p

∂s∂t
= 0. TOF-PET DCC (4)

The characteristic curves of (4) are helical curves of constant MLA in the (φ, s, t) space.

III. EQUIVALENT DCC FOR 2D TOF HISTOIMAGE DATA

The histoimage format3 parameterizes the TOF PET data using the MLA ~r:

q(φ,~r) = p(φ, s, t) with ~r = sû⊥ + tû

=

∫ ∞
−∞

dl w(l) f(~r + lû). (5)

This format allows a simple derivation of the DCC: if w(t) is the gaussian profile (2) and f is
smooth and decays at ∞, the 2D TOF data (5) satisfy for all ~r, φ the DCC:

∂q

∂φ
+ σ2 û · ∇2q · û⊥ = 0, where û · ∇2q · û⊥ =

2∑
i,j=1

ûi
∂2q

∂ri∂rj
û⊥j . (6)

1
Currently the FWHM of w is of the order of 400 ps, which corresponds to 60 mm.

2
Proof that (4) is necessary: use dw(t)/dt = −tw(t)/σ2 , dû⊥/dφ = û and dû/dφ = −û⊥ to rewrite the LHS as (the argument of f everywhere as in (1))∫ ∞

−∞

dl w(t− l)
{
tû
⊥ · ∇f + sû · ∇f − lû⊥ · ∇f + s

(t− l)
σ2

f − σ2 (t− l)
σ2

û
⊥ · ∇f

}
=

∫ ∞
−∞

dl w(t− l)
{
sû · ∇f + s

(t− l)
σ2

f

}
= s

∫ ∞
−∞

dl
d

dl
(w(t− l)f) = 0 (3)
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Proof.

∂q

∂φ
= −

∫ ∞
−∞

dl w(l) l (û⊥ · ∇f)(~r + lû) since
∂û

∂φ
= −û⊥

∇2q =

∫ ∞
−∞

dl w(l)∇2f(~r + lû) (7)

Also, as f decays at large ~x and the gaussian satisfies w′(l) = (−l/σ2)w(l),

0 =

∫ ∞
−∞

dl
d

dl
(w(l) f(~r + lû)) =

∫ ∞
−∞

dl w(l)

(−l
σ2
f + û · ∇f

)
(~r + lû) (8)

Taking the gradient of this equation wrt ~r, the scalar product with û⊥, and multiplying by σ2,

0 = σ2(û⊥ · ∇)0 =

∫ ∞
−∞

dl w(l)
(
−l û⊥ · ∇f + σ2 û · ∇2 · û⊥f

)
(~r + lû) (9)

With (7) this concludes the proof that (6) is a necessary DCC ((6) is of course equivalent to (4)).

IV. FOURIER DCC AND THE CENTRAL SLICE THEOREM FOR TOF PET

Consider the 2D Fourier transform

q̂(φ, ~ν) =

∫
IR2
d~r q(φ,~r) e−2πi ~ν·~r. (10)

Applying the Fourier transform to (6) one obtains the necessary DCC

∂q̂(φ, ~ν)

∂φ
− 4π2σ2(û · ~ν)(û⊥ · ~ν) q̂(φ, ~ν) = 0 (11)

which can also be written as (recall dû/dφ = −û⊥):

∂

∂φ

(
q̂(φ, ~ν)e2π

2σ2(û·~ν)2
)
=

∂

∂φ
(q̂(φ, ~ν)/ŵ(û · ~ν)) = 0. (12)

But the 2D TOF projection slice theorem (Fourier transform of (5)) is4

q̂(φ, ~ν) =

∫
IR2
d~r e−2πi ~ν·~r

∫ ∞
−∞

dl w(l) f(~r + lû)

=

∫
IR2
d~x f(~x)

∫ ∞
−∞

dl e−2πi ~ν·(~x−lû) w(l) = f̂(~ν)ŵ(û · ~ν), (13)

⇒ the Fourier DCC in the form (12) corresponds to the trivial identity ∂f̂(~ν)/∂φ = 0. This shows
that strong decay conditions on q̂ must be required for sufficiency (i.e. q̂/ŵ must be L2).

V. THE 3D CASE AND THE LINK WITH JOHN’S EQUATION.

The histoimage data (5) is extended to 3D with the same equation but now ~r ∈ IR3, û ∈ S2,
and û⊥ represents the plane orthogonal to û. The DCC (6) becomes a vector equation5,

∇ûq(û, ~r)− σ2 û · ∇2q(û, ~r) = ~0 (14)

where the ∇ without subscript denotes the gradient with respect to ~r. This equation has three
components but since û ∈ S2, the angular gradient ∇û has a meaning only in the two directions
orthogonal to û. Thus 3D TOF data q must be solution of two independent PDEs, obtained by
taking the scalar product of (14) with two unit vectors in û⊥.

Multiplying (14) by (â · ∇)(b̂·)− (b̂ · ∇)(â·) with â, b̂ ∈ û⊥ eliminates the term in σ2 and
yields a derived DCC which also holds in the limit σ → ∞ of non-TOF PET data: this derived
equation is the John equation for the 3D x-ray transform6.

4
In contrast with the other equations in the note, (13) holds for any smooth TOF profile, not only for the gaussian (2).
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