Data consistency conditions for 2D time-of-flight PET

Two pages supporting note, Grenoble January 2017, Michel Defrise

I. TIME-OF-FLIGHT 2D PET DATA

The TOF sinogram data parameterization is

$$
p(\phi, s, t) = \int_{-\infty}^{\infty} dl \, w(t - l) \, f(s\hat{u}^{\perp} + l\hat{u}) \tag{1}
$$

where s and ϕ are the usual radial and angular sinogram coordinates. The unit vectors \hat{u}^{\perp} = $(\cos \phi, \sin \phi)$ and $\hat{u} = (-\sin \phi, \cos \phi)$ are orthogonal and parallel to the line of response.

The *TOF profile* w is centered at point t along the line of response. The TOF profile w is determined by the time resolution of the scanner and is usually well modeled by a gaussian with standard deviation σ ¹

$$
w(t) = e^{-t^2/2\sigma^2}/\sqrt{2\pi}\sigma \leftrightarrow (\mathcal{F}w)(\nu) = \hat{w}(\nu) = e^{-2\pi^2\sigma^2\nu^2}.
$$
 (2)

The *most likely annihilation point* (MLA) corresponding to (ϕ, s, t) is defined by \vec{r} = $s\hat{u}^{\perp}+t\hat{u}.$

Inverting (1) is in essence a multi-channel deconvolution problem (one "channel" for each ϕ , see also (13) below).

II. CONSISTENCY CONDITION FOR 2D TOF SINOGRAM DATA

- Existence of a DCC expected from variable counting.
- Geometric interpretation on the black board.
- Trivial DCC if $\sigma \to 0$.
- The DCC (4) is *local*, unlike DCCs for non TOF 2D PET (such as Helgason-Ludwig).

If the TOF profile $w(t)$ is the gaussian profile (2) and f is smooth and decays at ∞ , the 2D TOF data, equation (1), satisfy for all ϕ , s, t the partial differential equation (PDE)²

$$
t\frac{\partial p}{\partial s} + \frac{\partial p}{\partial \phi} - s\frac{\partial p}{\partial t} + \sigma^2 \frac{\partial^2 p}{\partial s \partial t} = 0.
$$
 TOF-PET DCC (4)

The characteristic curves of (4) are helical curves of constant MLA in the (ϕ, s, t) space.

III. EQUIVALENT DCC FOR 2D TOF HISTOIMAGE DATA

The histoimage format³ parameterizes the TOF PET data using the MLA \vec{r} :

$$
q(\phi, \vec{r}) = p(\phi, s, t) \text{ with } \vec{r} = s\hat{u}^{\perp} + t\hat{u}
$$

=
$$
\int_{-\infty}^{\infty} dl \, w(l) \, f(\vec{r} + l\hat{u}).
$$
 (5)

This format allows a simple derivation of the DCC: if $w(t)$ is the gaussian profile (2) and f is smooth and decays at ∞ , the 2D TOF data (5) satisfy for all \vec{r}, ϕ the DCC:

$$
\frac{\partial q}{\partial \phi} + \sigma^2 \hat{u} \cdot \nabla^2 q \cdot \hat{u}^\perp = 0, \text{ where } \hat{u} \cdot \nabla^2 q \cdot \hat{u}^\perp = \sum_{i,j=1}^2 \hat{u}_i \frac{\partial^2 q}{\partial r_i \partial r_j} \hat{u}_j^\perp.
$$
 (6)

¹ Currently the FWHM of w is of the order of 400 ps, which corresponds to 60 mm.

Proof that (4) is necessary: use $dw(t)/dt = -tw(t)/\sigma^2$, $d\hat{u}^{\perp}/d\phi = \hat{u}$ and $d\hat{u}/d\phi = -\hat{u}^{\perp}$ to rewrite the LHS as (the argument of f everywhere as in (1))

$$
\int_{-\infty}^{\infty} dl \, w(t-l) \left\{ t\hat{u}^{\perp} \cdot \nabla f + s\hat{u} \cdot \nabla f - l\hat{u}^{\perp} \cdot \nabla f + s \frac{(t-l)}{\sigma^2} f - \sigma^2 \frac{(t-l)}{\sigma^2} \hat{u}^{\perp} \cdot \nabla f \right\}
$$

=
$$
\int_{-\infty}^{\infty} dl \, w(t-l) \left\{ s\hat{u} \cdot \nabla f + s \frac{(t-l)}{\sigma^2} f \right\} = s \int_{-\infty}^{\infty} dl \, \frac{d}{dl} (w(t-l)f) = 0
$$
 (3)

Defrise M, Panin V Y, Michel C and Casey M E 2008 Continuous and discrete data rebinning in time-of-flight PET IEEE Trans. Med. Imaging 27 1310-22.

3Matej S, Surti S, Jayanthi S, Daube-Witherspoon M E, Lewitt R M and Karp J S 2009 Efficient 3-D TOF PET reconstruction using view-grouped histo-images: DIRECTdirect image reconstruction for TOF IEEE Trans. Med. Imaging 28 739-51

Proof.

$$
\frac{\partial q}{\partial \phi} = -\int_{-\infty}^{\infty} dl \ w(l) l (\hat{u}^{\perp} \cdot \nabla f)(\vec{r} + l\hat{u}) \text{ since } \frac{\partial \hat{u}}{\partial \phi} = -\hat{u}^{\perp}
$$
\n
$$
\nabla^2 q = \int_{-\infty}^{\infty} dl \ w(l) \nabla^2 f(\vec{r} + l\hat{u}) \tag{7}
$$

Also, as f decays at large \vec{x} and the gaussian satisfies $w'(l) = (-l/\sigma^2)w(l)$,

$$
0 = \int_{-\infty}^{\infty} dl \frac{d}{dl} (w(l) f(\vec{r} + l\hat{u})) = \int_{-\infty}^{\infty} dl \ w(l) \left(\frac{-l}{\sigma^2} f + \hat{u} \cdot \nabla f\right) (\vec{r} + l\hat{u}) \tag{8}
$$

Taking the gradient of this equation wrt \vec{r} , the scalar product with \hat{u}^{\perp} , and multiplying by σ^2 ,

$$
0 = \sigma^2(\hat{u}^\perp \cdot \nabla)0 = \int_{-\infty}^{\infty} dl \ w(l) \left(-l \,\hat{u}^\perp \cdot \nabla f + \sigma^2 \,\hat{u} \cdot \nabla^2 \cdot \hat{u}^\perp f \right) (\vec{r} + l\hat{u}) \tag{9}
$$

With (7) this concludes the proof that (6) is a necessary DCC ((6) is of course equivalent to (4)).

IV. FOURIER DCC AND THE CENTRAL SLICE THEOREM FOR TOF PET

Consider the 2D Fourier transform

$$
\hat{q}(\phi,\vec{\nu}) = \int_{\mathbb{R}^2} d\vec{r} \, q(\phi,\vec{r}) \, e^{-2\pi i \,\vec{\nu}\cdot\vec{r}}.
$$
\n(10)

Applying the Fourier transform to (6) one obtains the necessary DCC

$$
\frac{\partial \hat{q}(\phi,\vec{\nu})}{\partial \phi} - 4\pi^2 \sigma^2 (\hat{u} \cdot \vec{\nu}) (\hat{u}^\perp \cdot \vec{\nu}) \hat{q}(\phi,\vec{\nu}) = 0 \tag{11}
$$

which can also be written as (recall $d\hat{u}/d\phi = -\hat{u}^{\perp}$):

$$
\frac{\partial}{\partial \phi} \left(\hat{q}(\phi, \vec{\nu}) e^{2\pi^2 \sigma^2 (\hat{u} \cdot \vec{\nu})^2} \right) = \frac{\partial}{\partial \phi} \left(\hat{q}(\phi, \vec{\nu}) / \hat{w} (\hat{u} \cdot \vec{\nu}) \right) = 0.
$$
 (12)

But the 2D TOF projection slice theorem (Fourier transform of (5)) is⁴

$$
\hat{q}(\phi, \vec{\nu}) = \int_{\mathbb{R}^2} d\vec{r} e^{-2\pi i \vec{\nu} \cdot \vec{r}} \int_{-\infty}^{\infty} dl \, w(l) \, f(\vec{r} + l\hat{u})
$$
\n
$$
= \int_{\mathbb{R}^2} d\vec{x} \, f(\vec{x}) \int_{-\infty}^{\infty} dl \, e^{-2\pi i \vec{\nu} \cdot (\vec{x} - l\hat{u})} \, w(l) = \hat{f}(\vec{\nu}) \hat{w}(\hat{u} \cdot \vec{\nu}), \tag{13}
$$

 \Rightarrow the Fourier DCC in the form (12) corresponds to the trivial identity $\frac{\partial \hat{f}(\vec{v})}{\partial \phi} = 0$. This shows that strong decay conditions on \hat{q} must be required for sufficiency (i.e. \hat{q}/\hat{w} must be L^2).

V. THE 3D CASE AND THE LINK WITH JOHN'S EQUATION.

The histoimage data (5) is extended to 3D with the same equation but now $\vec{r} \in \mathbb{R}^3$, $\hat{u} \in S^2$, and \hat{u}^{\perp} represents the plane orthogonal to \hat{u} . The DCC (6) becomes a vector equation⁵,

$$
\nabla_{\hat{u}} q(\hat{u}, \vec{r}) - \sigma^2 \hat{u} \cdot \nabla^2 q(\hat{u}, \vec{r}) = \vec{0}
$$
\n(14)

where the ∇ without subscript denotes the gradient with respect to \vec{r} . This equation has three components but since $\hat{u} \in S^2$, the angular gradient $\nabla_{\hat{u}}$ has a meaning only in the two directions orthogonal to \hat{u} . Thus 3D TOF data q must be solution of *two* independent PDEs, obtained by taking the scalar product of (14) with two unit vectors in \hat{u}^{\perp} .

Multiplying (14) by $(\hat{a} \cdot \nabla)(\hat{b} \cdot) - (\hat{b} \cdot \nabla)(\hat{a} \cdot)$ with $\hat{a}, \hat{b} \in \hat{u}^{\perp}$ eliminates the term in σ^2 and yields a derived DCC which also holds in the limit $\sigma \to \infty$ of non-TOF PET data: this derived equation is the John equation for the 3D x-ray transform⁶.

⁴In contrast with the other equations in the note, (13) holds for any smooth TOF profile, not only for the gaussian (2).

⁵ Yusheng Li et al, Phys. Med. Biol. 60 (2015) 6563-6583.

⁶ F. John (1971). Partial Differential Equations. Applied Mathematical Sciences, Springer-Verlag 1971; D. V. Finch, Cone beam reconstruction with sources on a curve, SIAM J Appl Math 45, pp. 665-673, 1985; S. K. Patch, Consistency conditions upon 3D CT data and the wave equation, Phys. Med. Biol., 47, pp. 2637-2650, 2002.